
QEMU Internals

i

Table of Contents

1 Introduction . 1
1.1 Features . 1
1.2 x86 and x86-64 emulation . 2
1.3 ARM emulation . 2
1.4 MIPS emulation . 2
1.5 PowerPC emulation . 2
1.6 Sparc32 and Sparc64 emulation . 2
1.7 Xtensa emulation . 3
1.8 Other CPU emulation . 3

2 QEMU Internals . 4
2.1 QEMU compared to other emulators . 4
2.2 Portable dynamic translation . 4
2.3 Condition code optimisations . 5
2.4 CPU state optimisations . 5
2.5 Translation cache . 5
2.6 Direct block chaining . 5
2.7 Self-modifying code and translated code invalidation 6
2.8 Exception support . 6
2.9 MMU emulation . 6
2.10 Device emulation . 6
2.11 Hardware interrupts . 7
2.12 User emulation specific details . 7

2.12.1 Linux system call translation . 7
2.12.2 Linux signals . 7
2.12.3 clone() system call and threads . 8
2.12.4 Self-virtualization . 8

2.13 Bibliography . 8

3 Regression Tests . 9
3.1 test-i386 . 9
3.2 linux-test . 9

4 Index . 10

1

1 Introduction

1.1 Features

QEMU is a FAST! processor emulator using a portable dynamic translator.

QEMU has two operating modes:

− Full system emulation. In this mode (full platform virtualization), QEMU emulates a
full system (usually a PC), including a processor and various peripherals. It can be
used to launch several different Operating Systems at once without rebooting the host
machine or to debug system code.

− User mode emulation. In this mode (application level virtualization), QEMU can
launch processes compiled for one CPU on another CPU, however the Operating Sys-
tems must match. This can be used for example to ease cross-compilation and cross-
debugging.

As QEMU requires no host kernel driver to run, it is very safe and easy to use.

QEMU generic features:

• User space only or full system emulation.

• Using dynamic translation to native code for reasonable speed.

• Working on x86, x86 64 and PowerPC32/64 hosts. Being tested on ARM, HPPA,
Sparc32 and Sparc64. Previous versions had some support for Alpha and S390 hosts,
but TCG (see below) doesn’t support those yet.

• Self-modifying code support.

• Precise exceptions support.

• Floating point library supporting both full software emulation and native host FPU
instructions.

QEMU user mode emulation features:

• Generic Linux system call converter, including most ioctls.

• clone() emulation using native CPU clone() to use Linux scheduler for threads.

• Accurate signal handling by remapping host signals to target signals.

Linux user emulator (Linux host only) can be used to launch the Wine Windows API emula-
tor (http://www.winehq.org). A BSD user emulator for BSD hosts is under development.
It would also be possible to develop a similar user emulator for Solaris.

QEMU full system emulation features:

• QEMU uses a full software MMU for maximum portability.

• QEMU can optionally use an in-kernel accelerator, like kvm. The accelerators execute
some of the guest code natively, while continuing to emulate the rest of the machine.

• Various hardware devices can be emulated and in some cases, host devices (e.g. serial
and parallel ports, USB, drives) can be used transparently by the guest Operating Sys-
tem. Host device passthrough can be used for talking to external physical peripherals
(e.g. a webcam, modem or tape drive).

• Symmetric multiprocessing (SMP) even on a host with a single CPU. On a SMP host
system, QEMU can use only one CPU fully due to difficulty in implementing atomic
memory accesses efficiently.

http://www.winehq.org

Chapter 1: Introduction 2

1.2 x86 and x86-64 emulation

QEMU x86 target features:

• The virtual x86 CPU supports 16 bit and 32 bit addressing with segmentation.
LDT/GDT and IDT are emulated. VM86 mode is also supported to run DOSEMU.
There is some support for MMX/3DNow!, SSE, SSE2, SSE3, SSSE3, and SSE4 as
well as x86-64 SVM.

• Support of host page sizes bigger than 4KB in user mode emulation.

• QEMU can emulate itself on x86.

• An extensive Linux x86 CPU test program is included tests/test-i386. It can be
used to test other x86 virtual CPUs.

Current QEMU limitations:

• Limited x86-64 support.

• IPC syscalls are missing.

• The x86 segment limits and access rights are not tested at every memory access (yet).
Hopefully, very few OSes seem to rely on that for normal use.

1.3 ARM emulation

• Full ARM 7 user emulation.

• NWFPE FPU support included in user Linux emulation.

• Can run most ARM Linux binaries.

1.4 MIPS emulation

• The system emulation allows full MIPS32/MIPS64 Release 2 emulation, including priv-
ileged instructions, FPU and MMU, in both little and big endian modes.

• The Linux userland emulation can run many 32 bit MIPS Linux binaries.

Current QEMU limitations:

• Self-modifying code is not always handled correctly.

• 64 bit userland emulation is not implemented.

• The system emulation is not complete enough to run real firmware.

• The watchpoint debug facility is not implemented.

1.5 PowerPC emulation

• Full PowerPC 32 bit emulation, including privileged instructions, FPU and MMU.

• Can run most PowerPC Linux binaries.

1.6 Sparc32 and Sparc64 emulation

• Full SPARC V8 emulation, including privileged instructions, FPU and MMU. SPARC
V9 emulation includes most privileged and VIS instructions, FPU and I/D MMU.
Alignment is fully enforced.

Chapter 1: Introduction 3

• Can run most 32-bit SPARC Linux binaries, SPARC32PLUS Linux binaries and some
64-bit SPARC Linux binaries.

Current QEMU limitations:

• IPC syscalls are missing.

• Floating point exception support is buggy.

• Atomic instructions are not correctly implemented.

• There are still some problems with Sparc64 emulators.

1.7 Xtensa emulation

• Core Xtensa ISA emulation, including most options: code density, loop, extended
L32R, 16- and 32-bit multiplication, 32-bit division, MAC16, miscellaneous operations,
boolean, FP coprocessor, coprocessor context, debug, multiprocessor synchronization,
conditional store, exceptions, relocatable vectors, unaligned exception, interrupts (in-
cluding high priority and timer), hardware alignment, region protection, region trans-
lation, MMU, windowed registers, thread pointer, processor ID.

• Not implemented options: data/instruction cache (including cache prefetch and lock-
ing), XLMI, processor interface. Also options not covered by the core ISA (e.g. FLIX,
wide branches) are not implemented.

• Can run most Xtensa Linux binaries.

• New core configuration that requires no additional instructions may be created from
overlay with minimal amount of hand-written code.

1.8 Other CPU emulation

In addition to the above, QEMU supports emulation of other CPUs with varying levels of
success. These are:

• Alpha

• CRIS

• M68k

• SH4

4

2 QEMU Internals

2.1 QEMU compared to other emulators

Like bochs [1], QEMU emulates an x86 CPU. But QEMU is much faster than bochs as
it uses dynamic compilation. Bochs is closely tied to x86 PC emulation while QEMU can
emulate several processors.

Like Valgrind [2], QEMU does user space emulation and dynamic translation. Valgrind is
mainly a memory debugger while QEMU has no support for it (QEMU could be used to
detect out of bound memory accesses as Valgrind, but it has no support to track uninitialised
data as Valgrind does). The Valgrind dynamic translator generates better code than QEMU
(in particular it does register allocation) but it is closely tied to an x86 host and target and
has no support for precise exceptions and system emulation.

EM86 [3] is the closest project to user space QEMU (and QEMU still uses some of its code,
in particular the ELF file loader). EM86 was limited to an alpha host and used a proprietary
and slow interpreter (the interpreter part of the FX!32 Digital Win32 code translator [4]).

TWIN from Willows Software was a Windows API emulator like Wine. It is less accurate
than Wine but includes a protected mode x86 interpreter to launch x86 Windows executa-
bles. Such an approach has greater potential because most of the Windows API is executed
natively but it is far more difficult to develop because all the data structures and function
parameters exchanged between the API and the x86 code must be converted.

User mode Linux [5] was the only solution before QEMU to launch a Linux kernel as a
process while not needing any host kernel patches. However, user mode Linux requires
heavy kernel patches while QEMU accepts unpatched Linux kernels. The price to pay is
that QEMU is slower.

The Plex86 [6] PC virtualizer is done in the same spirit as the now obsolete qemu-fast
system emulator. It requires a patched Linux kernel to work (you cannot launch the same
kernel on your PC), but the patches are really small. As it is a PC virtualizer (no emulation
is done except for some privileged instructions), it has the potential of being faster than
QEMU. The downside is that a complicated (and potentially unsafe) host kernel patch is
needed.

The commercial PC Virtualizers (VMWare [7], VirtualPC [8]) are faster than QEMU
(without virtualization), but they all need specific, proprietary and potentially unsafe host
drivers. Moreover, they are unable to provide cycle exact simulation as an emulator can.

VirtualBox [9], Xen [10] and KVM [11] are based on QEMU. QEMU-SystemC [12] uses
QEMU to simulate a system where some hardware devices are developed in SystemC.

2.2 Portable dynamic translation

QEMU is a dynamic translator. When it first encounters a piece of code, it converts it to
the host instruction set. Usually dynamic translators are very complicated and highly CPU
dependent. QEMU uses some tricks which make it relatively easily portable and simple
while achieving good performances.

After the release of version 0.9.1, QEMU switched to a new method of generating code,
Tiny Code Generator or TCG. TCG relaxes the dependency on the exact version of the

Chapter 2: QEMU Internals 5

compiler used. The basic idea is to split every target instruction into a couple of RISC-
like TCG ops (see target-i386/translate.c). Some optimizations can be performed
at this stage, including liveness analysis and trivial constant expression evaluation. TCG
ops are then implemented in the host CPU back end, also known as TCG target (see
tcg/i386/tcg-target.inc.c). For more information, please take a look at tcg/README.

2.3 Condition code optimisations

Lazy evaluation of CPU condition codes (EFLAGS register on x86) is important for CPUs
where every instruction sets the condition codes. It tends to be less important on con-
ventional RISC systems where condition codes are only updated when explicitly requested.
On Sparc64, costly update of both 32 and 64 bit condition codes can be avoided with lazy
evaluation.

Instead of computing the condition codes after each x86 instruction, QEMU just stores one
operand (called CC_SRC), the result (called CC_DST) and the type of operation (called CC_

OP). When the condition codes are needed, the condition codes can be calculated using this
information. In addition, an optimized calculation can be performed for some instruction
types like conditional branches.

CC_OP is almost never explicitly set in the generated code because it is known at translation
time.

The lazy condition code evaluation is used on x86, m68k, cris and Sparc. ARM uses a
simplified variant for the N and Z flags.

2.4 CPU state optimisations

The target CPUs have many internal states which change the way it evaluates instructions.
In order to achieve a good speed, the translation phase considers that some state information
of the virtual CPU cannot change in it. The state is recorded in the Translation Block (TB).
If the state changes (e.g. privilege level), a new TB will be generated and the previous TB
won’t be used anymore until the state matches the state recorded in the previous TB. For
example, if the SS, DS and ES segments have a zero base, then the translator does not even
generate an addition for the segment base.

[The FPU stack pointer register is not handled that way yet].

2.5 Translation cache

A 32 MByte cache holds the most recently used translations. For simplicity, it is completely
flushed when it is full. A translation unit contains just a single basic block (a block of x86
instructions terminated by a jump or by a virtual CPU state change which the translator
cannot deduce statically).

2.6 Direct block chaining

After each translated basic block is executed, QEMU uses the simulated Program Counter
(PC) and other cpu state information (such as the CS segment base value) to find the next
basic block.

In order to accelerate the most common cases where the new simulated PC is known, QEMU
can patch a basic block so that it jumps directly to the next one.

Chapter 2: QEMU Internals 6

The most portable code uses an indirect jump. An indirect jump makes it easier to make the
jump target modification atomic. On some host architectures (such as x86 or PowerPC),
the JUMP opcode is directly patched so that the block chaining has no overhead.

2.7 Self-modifying code and translated code invalidation

Self-modifying code is a special challenge in x86 emulation because no instruction cache
invalidation is signaled by the application when code is modified.

When translated code is generated for a basic block, the corresponding host page is write
protected if it is not already read-only. Then, if a write access is done to the page, Linux
raises a SEGV signal. QEMU then invalidates all the translated code in the page and
enables write accesses to the page.

Correct translated code invalidation is done efficiently by maintaining a linked list of every
translated block contained in a given page. Other linked lists are also maintained to undo
direct block chaining.

On RISC targets, correctly written software uses memory barriers and cache flushes, so
some of the protection above would not be necessary. However, QEMU still requires that
the generated code always matches the target instructions in memory in order to handle
exceptions correctly.

2.8 Exception support

longjmp() is used when an exception such as division by zero is encountered.

The host SIGSEGV and SIGBUS signal handlers are used to get invalid memory accesses.
The simulated program counter is found by retranslating the corresponding basic block and
by looking where the host program counter was at the exception point.

The virtual CPU cannot retrieve the exact EFLAGS register because in some cases it is not
computed because of condition code optimisations. It is not a big concern because the
emulated code can still be restarted in any cases.

2.9 MMU emulation

For system emulation QEMU supports a soft MMU. In that mode, the MMU virtual to
physical address translation is done at every memory access. QEMU uses an address trans-
lation cache to speed up the translation.

In order to avoid flushing the translated code each time the MMU mappings change, QEMU
uses a physically indexed translation cache. It means that each basic block is indexed with
its physical address.

When MMU mappings change, only the chaining of the basic blocks is reset (i.e. a basic
block can no longer jump directly to another one).

2.10 Device emulation

Systems emulated by QEMU are organized by boards. At initialization phase, each board
instantiates a number of CPUs, devices, RAM and ROM. Each device in turn can assign
I/O ports or memory areas (for MMIO) to its handlers. When the emulation starts, an

Chapter 2: QEMU Internals 7

access to the ports or MMIO memory areas assigned to the device causes the corresponding
handler to be called.

RAM and ROM are handled more optimally, only the offset to the host memory needs to
be added to the guest address.

The video RAM of VGA and other display cards is special: it can be read or written directly
like RAM, but write accesses cause the memory to be marked with VGA DIRTY flag as
well.

QEMU supports some device classes like serial and parallel ports, USB, drives and network
devices, by providing APIs for easier connection to the generic, higher level implementa-
tions. The API hides the implementation details from the devices, like native device use or
advanced block device formats like QCOW.

Usually the devices implement a reset method and register support for saving and loading
of the device state. The devices can also use timers, especially together with the use of
bottom halves (BHs).

2.11 Hardware interrupts

In order to be faster, QEMU does not check at every basic block if a hardware interrupt
is pending. Instead, the user must asynchronously call a specific function to tell that an
interrupt is pending. This function resets the chaining of the currently executing basic
block. It ensures that the execution will return soon in the main loop of the CPU emulator.
Then the main loop can test if the interrupt is pending and handle it.

2.12 User emulation specific details

2.12.1 Linux system call translation

QEMU includes a generic system call translator for Linux. It means that the parameters of
the system calls can be converted to fix the endianness and 32/64 bit issues. The IOCTLs
are converted with a generic type description system (see ioctls.h and thunk.c).

QEMU supports host CPUs which have pages bigger than 4KB. It records all the mappings
the process does and try to emulated the mmap() system calls in cases where the host mmap()
call would fail because of bad page alignment.

2.12.2 Linux signals

Normal and real-time signals are queued along with their information (siginfo_t) as it is
done in the Linux kernel. Then an interrupt request is done to the virtual CPU. When it is
interrupted, one queued signal is handled by generating a stack frame in the virtual CPU as
the Linux kernel does. The sigreturn() system call is emulated to return from the virtual
signal handler.

Some signals (such as SIGALRM) directly come from the host. Other signals are synthesized
from the virtual CPU exceptions such as SIGFPE when a division by zero is done (see
main.c:cpu_loop()).

The blocked signal mask is still handled by the host Linux kernel so that most signal
system calls can be redirected directly to the host Linux kernel. Only the sigaction() and
sigreturn() system calls need to be fully emulated (see signal.c).

Chapter 2: QEMU Internals 8

2.12.3 clone() system call and threads

The Linux clone() system call is usually used to create a thread. QEMU uses the host
clone() system call so that real host threads are created for each emulated thread. One
virtual CPU instance is created for each thread.

The virtual x86 CPU atomic operations are emulated with a global lock so that their
semantic is preserved.

Note that currently there are still some locking issues in QEMU. In particular, the translated
cache flush is not protected yet against reentrancy.

2.12.4 Self-virtualization

QEMU was conceived so that ultimately it can emulate itself. Although it is not very useful,
it is an important test to show the power of the emulator.

Achieving self-virtualization is not easy because there may be address space conflicts.
QEMU user emulators solve this problem by being an executable ELF shared object as
the ld-linux.so ELF interpreter. That way, it can be relocated at load time.

2.13 Bibliography

[1] http://bochs.sourceforge.net/ , the Bochs IA-32 Emulator Project, by
Kevin Lawton et al.

[2] http://www.valgrind.org/, Valgrind, an open-source memory debugger for
GNU/Linux.

[3] http://ftp.dreamtime.org/pub/linux/Linux-Alpha/em86/v0.2/docs/

em86.html, the EM86 x86 emulator on Alpha-Linux.

[4] http: / / www . usenix . org / publications / library / proceedings /

usenix-nt97 / full_papers / chernoff / chernoff . pdf, DIGITAL FX!32:
Running 32-Bit x86 Applications on Alpha NT, by Anton Chernoff and Ray
Hookway.

[5] http://user-mode-linux.sourceforge.net/, The User-mode Linux Kernel.

[6] http://www.plex86.org/, The new Plex86 project.

[7] http://www.vmware.com/, The VMWare PC virtualizer.

[8] https://www.microsoft.com/download/details.aspx?id=3702, The Virtu-
alPC PC virtualizer.

[9] http://virtualbox.org/, The VirtualBox PC virtualizer.

[10] http://www.xen.org/, The Xen hypervisor.

[11] http://www.linux-kvm.org/, Kernel Based Virtual Machine (KVM).

[12] http://www.greensocs.com/projects/QEMUSystemC, QEMU-SystemC, a
hardware co-simulator.

http://bochs.sourceforge.net/
http://www.valgrind.org/
http://ftp.dreamtime.org/pub/linux/Linux-Alpha/em86/v0.2/docs/em86.html
http://ftp.dreamtime.org/pub/linux/Linux-Alpha/em86/v0.2/docs/em86.html
http://www.usenix.org/publications/library/proceedings/usenix-nt97/full_papers/chernoff/chernoff.pdf
http://www.usenix.org/publications/library/proceedings/usenix-nt97/full_papers/chernoff/chernoff.pdf
http://user-mode-linux.sourceforge.net/
http://www.plex86.org/
http://www.vmware.com/
https://www.microsoft.com/download/details.aspx?id=3702
http://virtualbox.org/
http://www.xen.org/
http://www.linux-kvm.org/
http://www.greensocs.com/projects/QEMUSystemC

9

3 Regression Tests

In the directory tests/, various interesting testing programs are available. They are used
for regression testing.

3.1 test-i386

This program executes most of the 16 bit and 32 bit x86 instructions and generates a text
output. It can be compared with the output obtained with a real CPU or another emulator.
The target make test runs this program and a diff on the generated output.

The Linux system call modify_ldt() is used to create x86 selectors to test some 16 bit
addressing and 32 bit with segmentation cases.

The Linux system call vm86() is used to test vm86 emulation.

Various exceptions are raised to test most of the x86 user space exception reporting.

3.2 linux-test

This program tests various Linux system calls. It is used to verify that the system call
parameters are correctly converted between target and host CPUs.

10

4 Index

(Index is nonexistent)

	Introduction
	Features
	x86 and x86-64 emulation
	ARM emulation
	MIPS emulation
	PowerPC emulation
	Sparc32 and Sparc64 emulation
	Xtensa emulation
	Other CPU emulation

	QEMU Internals
	QEMU compared to other emulators
	Portable dynamic translation
	Condition code optimisations
	CPU state optimisations
	Translation cache
	Direct block chaining
	Self-modifying code and translated code invalidation
	Exception support
	MMU emulation
	Device emulation
	Hardware interrupts
	User emulation specific details
	Linux system call translation
	Linux signals
	clone() system call and threads
	Self-virtualization

	Bibliography

	Regression Tests
	test-i386
	linux-test

	Index

